
28 The Delphi Magazine Issue 52

Beating The System:
Taming The File System, 2
by Dave Jewell

In last month’s column, I began
the development of a VCL class

which encapsulates much of the
file system, eliminating the need to
endlessly re-invent the wheel when
working with files and directories.
The emphasis in the first article
was at the disk drive level, but this
month we’ll turn our attention to
folders and files.

Folder Navigation Features
In order to simplify file operations
from the viewpoint of the applica-
tion programmer, I added a prop-
erty called FolderName to last
month’s code:

property FolderName: String
read fFolderName
write SetFolderName;

This property indicates the cur-
rent absolute folder location, the
place where the TFileSystem object
is ‘pointing’, so to speak. All file
operations are considered to be
relative to this location. Thus, if
you read the FolderName property,
you might get back a value of
C:\WINDOWS\TEMP indicating that
you’re pointed at this folder.

However, in order to make
things even easier to use, I decided
to add some shortcut features to
this property. For example, if the

current FolderName is set as above
and you want to move up one direc-
tory level to C:\WINDOWS, it isn’t
necessary for the application to
figure out the appropriate direc-
tory name. Instead, you can just
assign the string .. to the
FolderName property. When you
read FolderName, it will then return
C:\WINDOWS as you’d expect. This
makes it very much easier to move
up a directory at a time. Obviously,
the .. shortcut will be ignored if
the TFileSystem object is already
pointing at the root directory!

Throughout this discussion, the
term ‘folder’ is synonymous with
‘subdirectory’ and ‘directory’
(’folder’ is a lot easier to type!).

As another shortcut, setting the
FolderName property to an empty
string is interpreted as moving to
the root folder of the current drive.
Additionally, if you try setting
FolderName to Fred (for example)
then TFileSystem will assume that
Fred is a folder which exists at the

current folder level. In other
words, if FolderName is set to
C:\WINDOWS and you then try to set
FolderName to Fred, then this will be
interpreted as an attempt to set
the directory location to C:\WIN-
DOWS\FRED. If no such folder is
found, then the assignment to
FolderName will be ignored.

I’ve also implemented a TString-
Listproperty called Folderswhich
is automatically filled with all the
available folder names at each
directory level. This means that
when (for example) performing
some operation on a group of fold-
ers you might be tempted to do
something like Listing 1.

This will not work! Assuming
that you’re at the root directory
level, you might have three subdi-
rectories called A, B and C, and
these are the directory names that
will be placed into the Folders list.
Once the first assignment to
FolderName has taken place, the file
system component will rebuild the
Folders property to match what-
ever folders are located within the
A folder, and things will go
pear-shaped in very short order. A
much better approach would be to
do something similar to Listing 2.

Here, we never alter the value of
FolderName within the loop. Each
time round the loop we build a
complete path specification from
the FolderName (which is guaran-
teed to always end with a back-
slash) and successive elements of
the Folders list.

for Idx := 0 to FileSystem.Folders.Count - 1 do begin
FileSystem.FolderName := FileSystem.Folders [Idx];
... more code ...

end;

for Idx := 0 to FileSystem.Folders.Count - 1 do begin
Str := FileSystem.FolderName + FileSystem.Folders [Idx];
... more code ...

end;

➤ Above: Listing 1 ➤ Below: Listing 2

Example Meaning

(Empty string) Set the root directory on the current drive

. Set the current directory on the current drive
(effectively, a no-op)

.. Go up one directory level if not already at the root

Fred Go to the directory ‘Fred’ at the current directory
level (current drive)

\Fred Go to the directory ‘\Fred’ (below root on current
drive)

C:\Fred Go to the directory ‘C:\Fred’ on designated drive

➤ Table 1

December 1999 The Delphi Magazine 29

The full list of property assign-
ment possibilities for FolderName is
given in Table 1.

In the last case, the TFileSystem
object ends up ‘pointing’ at a differ-
ent drive, with consequent
changes to the DriveLetter (and
other drive-specific) properties.

In addition to all the above,
there’s also the rather thorny pos-
sibility that you might try assigning
a string such as C:WOMBAT to
FolderName, ie a drive specification
with a relative pathname. Hope-
fully, you wouldn’t do this, but, if
you did, what’s the problem? If the
specified drive letter agrees with
the current drive, then you can
safely interpret it as WOMBAT, ie just
assume it’s relative to the current
folder. But if a different drive is
specified, then what do we do?
Should we assume it’s relative to
the root of the indicated drive, or
relative to the current directory of
that drive, or what? In the end, I
decided to play safe and ignore
such requests if the drive letter dif-
fers from the current drive, but it
might be better to disallow folder
name assignments of that type
altogether.

Armed with the above working
specification, you can see the
implementation of the new
SetFolderName method in Listing 3.
This represents a sort of ‘delta’ of
last month’s code listing, showing

only the new stuff that’s been
added since last time. The
SetFolderName routine is now called
from the end of the Refresh
method, such that the TFileSystem
object always ends up pointing at
the root folder when changing
from one drive to another.

SetFolderName simply exits if it
gets given a folder name compris-
ing a single dot (the current direc-
tory), whereas if an empty string is
passed, then it’s converted to the
root folder of the current drive.
Similarly, passing the string ..
causes the current folder position
to be backed up by one directory
level as mentioned previously.

For each of the possible types of
path specification passed to the
routine, we end up with a single,
well-formed (hopefully!) path
string of the form X:\YYYYYY. The
final job of the code is to make sure
that the first letter of the path
specification is uppercased, and
then check that the directory
exists. If it doesn’t, then the code
simply exits. If the directory does
exist, then SetFolderName ensures
that the new folder name
terminates with a backslash, and
that it’s different to the existing
folder name. If it is, then the
RefreshFolderAndFileList routine
is called.

The DirectoryExists routine is
used to check for the presence of a

particular directory. I wrote my
own DirectoryExists routine to do
this, and the code is included in
Listing 3, it’s pretty obvious how it
works. Because this is such a
useful routine, I made it into a class
function so that you can call it
without actually instantiating a
TFileSystem object. One of the
most useful (but little known)
Delphi units is the FileCtrl unit
where you’ll find another version
of DirectoryExists: there’s not
much to choose between them.

To FileClose Or
Not To FileClose,
That Is The Question
Assuming that the target directory
exists, then the RefreshFolderAnd-
FileList routine gets invoked. As
you’ve probably guessed, I added
another property, Folders, to my
file system object, implementing it
as a TStringList. This property
contains the list of folders that
exist at the current directory level:

property Folders: TStringList
read fFolders;

As ever, this declaration has to go
into the public (rather than pub-
lished) part of the class declara-
tion because Delphi doesn’t like
read-only published properties. I
really hate having to write dummy
property ‘setter’ procedures just
to make a property appear in the
property inspector. Sigh... maybe
this silly limitation will get fixed in
Kylix, but I’m not holding my
breath.

The code for RefreshFolderAnd-
FileList clears the existing list of
folders and then uses the familiar
FindFirst and FindNext routines to
iterate through the list of available
files, searching for directories and
adding them to the Folders prop-
erty.

As I may have said last time
round, there’s one thing that’s vir-
tually guaranteed to trip up any
programmer who writes his/her
first tree-walking recursive direc-
tory scanner, and that’s the gotcha
associated with the ‘.’ and ‘..’ direc-
tory names. As we’ve already seen,
I effectively support this conven-
tion when assigning to the

➤ Figure 1: One of the banes of my life, the '.' and '..' pseudo-directory
entries which, thanks to Microsoft's somewhat kack-handed
implementation, show up in directory lookup operations, providing
an instant gotcha when writing tree-walking directory routines.

30 The Delphi Magazine Issue 52

procedure TFileSystem.SetFolderName (Value: String);
var Idx: Integer;
begin
// Do the trivial stuff first....
if Value = '.' then
Exit;

if Value = '' then
Value := fDriveLetter + ':\';

// Handle a request to go up one level
if Value = '..' then begin
// Already at root
if Length (fFolderName) = 3 then
Exit;

Idx := Length (fFolderName) - 1;
while fFolderName[Idx] <> '\' do
Dec(Idx);

Value := Copy(fFolderName, 1, Idx);
end;
// Handle relative path (no drive letter or backslash)
if (Value [1] <> '\') and (Value [2] <> ':') then
Value := fFolderName + Value;

// Handle an absolute path (no leading drive letter)
if Value [1] = '\' then
Value := fDriveLetter + ':' + Value;

// Handle a path -- with drive letter
if Value [2] = ':' then begin
Value [1] := UpCase (Value [1]);
if Value [1] <> fDriveLetter then
Exit;

if Value [3] <> '\' then
Value := fFolderName + Copy(Value, 3, MaxInt);

end;
// At this point, Value should be in the form X:\YYYYYY
// Now, we need to check that the wanted path exists
if not DirectoryExists(Value) then
Exit;

// Finally, set new folder name and refresh folder list
if Value [Length (Value)] <> '\' then
Value := Value + '\';

if AnsiLowerCaseFileName(Value) <>
AnsiLowerCaseFileName(fFolderName) then begin
fFolderName := Value;
RefreshFolderAndFileList;

end;
end;
procedure TFileSystem.SetFileTypes (Value: TFileTypes);
begin
if Value <> fFileTypes then begin
fFileTypes := Value;
RefreshFolderAndFileList;

end;
end;
class function TFileSystem.DirectoryExists(
const DirName: String): Boolean;

var OldDir: String;
begin
OldDir := GetCurrentDir;
try
Result := SetCurrentDir(DirName);

finally
SetCurrentDir(OldDir);

end;
end;
function TFileSystem.MatchingFile(Rec: TSearchRec): Boolean;
begin
Result := True;
// Read-only file ?
if ((Rec.Attr and faReadOnly) < >0) and
(ftReadOnly in fFileTypes) then Exit;

// Hidden file ?
if ((Rec.Attr and faHidden) <> 0) and
(ftHidden in fFileTypes) then Exit;

// System-file ?
if ((Rec.Attr and faSysFile) <> 0) and
(ftSystem in fFileTypes) then Exit;

// Archive file ?
if ((Rec.Attr and faArchive) <> 0) and
(ftArchive in fFileTypes) then Exit;

Result := Rec.Attr = 0;
end;
procedure TFileSystem.RefreshFolderAndFileList;
var
Err: Integer;
Rec: TSearchRec;

begin
fFolders.Clear;
fFiles.Clear;
fTotalFileSize := 0;

Err := FindFirst (fFolderName + '*.*', faAnyFile, Rec);
try
while Err = 0 do begin
if (Rec.Attr and faDirectory) <> 0 then begin
// Ignore the accursed '.' and '..' names
if Rec.Name [1] <> '.' then
fFolders.Add (Rec.Name);

end else if (Rec.Attr and faVolumeID) = 0 then
// Not a directory, not a volumeID - must be a file!
if MatchingFile (Rec) then begin
fFiles.Add (Rec.Name);
fTotalFileSize := fTotalFileSize + Rec.Size;

end;
Err := FindNext (Rec);

end;
finally
FindClose (Rec);

end;
end;
procedure TFileSystem.TreeWalkFiles (Proc: TWalkProc);
var Continue: Boolean;
begin
Screen.Cursor := crHourGlass;
try
Continue := True;
if Assigned(Proc) then
FileWalker(fFolderName, Proc, Continue);

finally
Screen.Cursor := crDefault;

end;
end;
procedure TFileSystem.TreeWalkFolders (Proc: TWalkProc);
var Continue: Boolean;
begin
Screen.Cursor := crHourGlass;
try
Continue := True;
if Assigned(Proc) then
FolderWalker(fFolderName, Proc, Continue);

finally
Screen.Cursor := crDefault;

end;
end;
procedure TFileSystem.FileWalker(const Folder: String;
Proc: TWalkProc; var Continue: Boolean);

var
Err: Integer;
Rec: TSearchRec;

begin
Err := FindFirst (Folder + '*.*', faAnyFile, Rec);
try
while (Err = 0) and Continue do begin
if (Rec.Attr and faDirectory) <> 0 then begin
// Ignore the accursed '.' and '..' names
if Rec.Name [1] <> '.' then
FileWalker(Folder+Rec.Name+'\', Proc, Continue);

end else if (Rec.Attr and faVolumeID) = 0 then
// Not a directory, not a volumeID - must be a file!
if MatchingFile (Rec) then begin
Proc (Folder + Rec.Name, Rec, Continue);

end;
Err := FindNext (Rec);

end;
finally
FindClose (Rec);

end;
end;
procedure TFileSystem.FolderWalker (const Folder: String;
Proc: TWalkProc; var Continue: Boolean);

var
Err: Integer;
Rec: TSearchRec;

begin
Err := FindFirst (Folder + '*.*', faAnyFile, Rec);
try
while (Err = 0) and Continue do begin
if (Rec.Attr and faDirectory) <> 0 then begin
// Ignore the accursed '.' and '..' names
if Rec.Name [1] <> '.' then
FileWalker(Folder+Rec.Name + '\', Proc, Continue);

Proc(Folder+Rec.Name+'\', Rec, Continue);
end;
Err := FindNext (Rec);

end;
finally
FindClose (Rec);

end;
end;

➤ Listing 3

FolderName property, but I defi-
nitely don’t believe that these
pseudo-directory names should be
returned as part of a list of avail-
able files/folders. For this reason,

the RefreshFolderAndFileList rou-
tine specifically looks for any direc-
tory which begins with a period
and excludes it from the list of
returned names.

If only Microsoft had done
the same thing when they

implemented the low-level rou-
tines that implement FindFirst
and FindNext functionality in the
MSDOS kernel! If they’d done so, it
would have saved everyone a lot of
grief. To this day, when you type
DIR at a DOS prompt, you’ll see ‘.’

December 1999 The Delphi Magazine 31

and ‘..’ included as part of the list-
ing and even included in the direc-
tory count at the bottom of the
screen. On the positive side,
there’s some evidence that
Microsoft might be coming round
to my way of thinking on this: you’ll
find that the Folders collection
implemented in the Visual Basic
FSO library doesn’t include these
pseudo-directories in it.

You’ll notice, incidentally, that
the RefreshFolderAndFileList rou-
tine calls FindClose whether or not
the initial call to FindFirst resulted
in an error. Because of the pres-
ence of those two accursed
pseudo-directories, it’s hard to see
how an error might occur. In other
words, even an empty folder will
contain two entries, and therefore
calling FindFirst on an empty
folder with a file specification of
. won’t cause a problem. But for
the sake of argument, let’s suppose
that there was an error. The ques-
tion then becomes, is it ok to call
FindClose if the initial FindFirst
call returned an error? This partic-
ular question occupied a number
of Delphites on CIX recently, with
some folks insisting that you really
should only call FindClose if the ini-
tial FindFirst call was successful.
Happily, it’s very much a moot
issue: if you examine Borland’s
implementation of FindClose (look
in the SYSUTILS.PAS file) you’ll see
that it cunningly checks the value
of the actual search handle, stored
as part of the search record, and
only calls the underlying API
FindClose routine if the handle is
valid. I love it when I see clever
code like this. It’s this sort of knack
for simplifying and taming the cum-
bersome Windows API that
Borland are particularly good at.
For other thoughts in a similar
vein, take a look at Brian Long’s
excellent article on the safecall
keyword in last month’s issue.

Files Versus Folders
As the name suggests, the
RefreshFolderAndFileList routine
also has the job of filling the Files
property (another TStringList)
with a list of all the files at the cur-
rent directory level. It makes sense
to do the two jobs at the same time

with a single FindFirst/FindNext
loop, and that is exactly what hap-
pens. In order to discriminate
between files and folders, the code
checks the faDirectory bit of the
file attribute in the search record.
However, if this bit is zero, we
cannot guarantee that we are deal-
ing with a file, because it might be a
volume ID!

As you may appreciate, this is
another example of poor design on
the part of Microsoft. Rather than
implementing the volume ID in the
boot sector of a disk, Microsoft
plonked it into the root folder of a
volume, and compounded the
error by making the volume ID sub-
ject to directory lookups, just like
any other file or directory entry!
You could argue that they had no
choice but to put it in the directory
area, because there was no room in
the boot sector (though I’m not
sure if this is true). But whoever
decided that the DOS-level
FindFirst/FindNext routines would
return the volume ID directory
entry has the same relationship to
API design as Cyril Smith has to
ballet! A much better idea would
have been to implement a com-
pletely new operating system func-
tion to get/set the volume label,
and completely ignore the volume
ID directory entry when perform-
ing lookups. Do I sometimes sound
like a frustrated would-be operat-
ing system designer? Yup, I guess I
do...

In last month’s code, you’ll
remember that I added a property
called DriveTypes, the idea being
that TFileSystem would ignore all
drives that weren’t of a specific
type. In the same way, I’ve added
another property FileTypes which
allows you to perform filtering
based on a set of file attributes. It’s
defined as in Listing 4.

Notice that I haven’t included
volume IDs and directory attrib-
utes because they don’t logically
belong here! A file is a file, and a
directory is a directory, and never
the twain shall meet! In MSDOS, the

archive bit is arguably rather vesti-
gial: the idea is that backup soft-
ware and other archiving tools set
this bit to indicate whether or not a
particular file has been backed up.
If you trawl through your hard disk
with Windows Explorer, you’ll find
that many files have the archive bit
set and for this reason the
FileTypes property includes the
ftArchive bit by default. You need
to fully appreciate how the
FileTypes property works. If you,
for example, set this property to
[ftHidden] then it simply means
that hidden files will be added to
the Files property in addition to
normal files.

For the sake of convenience, I’ve
also added a TotalFileSize prop-
erty. Given a specific set of files in
the Files property, TotalFileSize
will return the total byte size of all
the files in the list. This calculation
is performed within the
RefreshFolderAndFileList routine
while the available files and folders
are being enumerated.

First Steps In Tree-Walking
Although the TFileSystem object is
deeply wonderful as far as it goes
(wot, me, biased?) my real inten-
tion here was to write a unit that
would make it simple to perform
relatively high-level operations
such as, for example, deleting a
directory tree, moving a directory
tree, calculating the size of a direc-
tory tree and so forth. In order to
do this, we need (drum-roll,
please) the inevitable tree-walking
algorithm!

In case you were wondering, the
reason I have a rather special
fondness for tree-walking algo-
rithms is because the first ever
magazine article I wrote was for a
tree-walker, in the (long defunct)
Program Now magazine.

A little known feature of Win-
dows Explorer is that if you right
click on a folder name and then
select Properties from the ensuing

TFileType = (ftReadOnly, ftHidden, ftSystem, ftArchive);
TFileTypes = set of TFileType;
property FileTypes: TFileTypes read fFileTypes write SetFileTypes
default [ftArchive];

➤ Listing 4

32 The Delphi Magazine Issue 52

pop-up context menu, Explorer will
do a tree-walk of the folder and
then display an information panel
telling you the total size of the
folder, including all its sub-folders
(see Figure 2). I wanted to make it
easy for an application program-
mer to do the same thing using the
TFileSystem object, and you’ll see
how easy this is a little later when
we look at this month’s test bed
program.

In order to be versatile, a
tree-walking algorithm needs to be
completely general, which simply
means that it doesn’t know (or
care) what it’s supposed to do for
each file or folder that it visits. As
pointed out above, you might want
to delete all the files in a tree, copy
the files, search for specific
filenames, or whatever. The
tree-walking algorithm doesn’t
know and doesn’t care what you
want to do, but for every ‘node’
that it visits, you need to supply a
call-back procedure which does
the real work:

TWalkProc = procedure (
const Name: String;
const Info: TSearchRec;
var Continue: Boolean)
of Object;

The TFileSystem object actually
implements two distinct tree-
walking routines, TreeWalkFiles
and TreeWalkFolders. As the names
suggest, the first deals with files
and the second with folders. Both
take a callback routine of type
TWalkProc. The first routine calls

the procedure which you
supply for every file that it
encounters while the
second calls the procedure
for every encountered
folder. In the case of
TreeWalkFolders, any child
folders are enumerated
(and the callback routine is called
for each of them) before the call-
back is invoked for the parent
folder.

This is important because you
might, for example, want to do a
tree-walking delete on a directory
tree. MSDOS won’t allow you to
delete a subdirectory which itself
contains subdirectories, and that’s
true even if the child directories
are themselves empty. Thus, you
have to walk the tree removing the
deepest level ‘great-great-grand-
children’ before you can then
delete the ‘great-grandchildren’
before you can... etc! By imple-
menting TreeWalkFolders in such a
way that the callback routine is
called for the most nested directo-
ries first, all this comes out in the
wash.

In order to make things as
flexible as possible, the TWalkProc
callback routine takes three
parameters. The first is the
fully-qualified pathname of the
object being enumerated. In the
case of TreeWalkFolders, this will
be the full name of each directory,
terminated with a backslash, for
example C:\WINDOWS\SYSTEM\. In
the case of TreeWalkFiles, it will
obviously be the name of each file
that’s encountered. You should
note carefully, however, that the
TreeWalkFiles routine respects the
current value of the FileTypes
property as discussed above.
Thus, if you want to make darn
sure that you enumerate all the
files in a directory tree, you should
set FileTypes to [ftReadOnly,
ftHidden, ftSystem, ftArchive]
before calling TreeWalkFiles.

The second parameter passed
to the callback routine is the
TSearchRec record that was used to
enumerate the file or folder. This
contains some useful information
such as the size of the file, the mod-
ification date/time of the file or
folder, and also includes another
field, FindData, which is a record of
type TWin32FindData. This contains
a lot of extra information (possibly
more than you want!) including the
name of the file in old-style 8.3
character format.

The final parameter, Continue, is
a Boolean Var parameter which is
set to Trueby default. If you set this

➤ Figure 2: A little-known
feature of Windows
Explorer is the ability
to display the total size
of a specified folder
using the Properties
item on the pop-up
context menu. Here,
we can see that
Delphi 5 weighs in at a
surprisingly trim 122Mb.

➤ Figure 3: This month's test bed application for the TFileSystem
object demonstrates how to use the general-purpose TreeWalkFiles
routine to tot up the size of all the files in a given directory tree.
Use it to delete all the files on your disk if you like, but don't
blame me…

34 The Delphi Magazine Issue 52

to False, the tree-walking algo-
rithm will terminate. This is useful
if (for instance) you want to stop a
tree-walk when you’ve found a par-
ticular file, or perhaps you run out
of disk space part way through
copying a large directory tree and
need to stop the bus at the earliest
opportunity!

The Test Bed Program
Putting all this together, I built a
revised test bed program to
demonstrate this month’s new
additions to the code. You can see
the revised program running in
Figure 3, and the important parts of
the code in Listing 5. Drive specific
information is displayed on the
left-hand side of the program
window with folder and file specific
information on the right. At any

point, the Current Folder edit box
shows the folder to which the
TFileSystem object is ‘pointing’ and
the Sub-Folders combobox con-
tains the list of sub-folders (if any)
that are located below the current
folder. The listbox on the left
shows the list of files which reside
at the current directory level. This
file list can be filtered by using the
four file-attribute checkboxes
which (if clicked) cause an
updated file list to be displayed
immediately.

It is instructive to run this little
program on your Windows\
System directory. On my machine,
it informed me that I had 2,329 files
in my system directory, and that
they occupied almost 400Mb of
disk space. Aren’t you just looking
forward to moving to a really

grown-up operating system like
Windows 2000? J.

As you can see, the test bed pro-
gram also displays the total
number of files in the Files prop-
erty at any time, in addition to the
total byte size of all the files at the
current directory level. What it
doesn’t show is the total size of all
the files, including sub-folders.
Recalculating this on the fly would
be a somewhat time-consuming
process, and so I added a
push-button to calculate this infor-
mation on request, demonstrating
the use of the TreeWalkFiles
routine.

As you can see, using Tree-
WalkFiles is very straightforward.
The test bed form declaration

var
FileSys: TFileSystem;

procedure TForm1.FormCreate (Sender: TObject);
var Idx: Integer;
begin
FileSys := TFileSystem.Create (Self);
with FileSys do begin
DriveTypes := [fsFixed, fsRemote, fsCDROM];
for Idx := 0 to DriveCount - 1 do DriveList.Items.Add
(Drives [Idx] + ':');
DriveList.ItemIndex := 0;
DriveListChange (Self);
// Set File attribute checkboxes according to current
// 'FileTypes'
cbReadOnly.Checked := ftReadOnly in FileTypes;
cbHidden.Checked := ftHidden in FileTypes;
cbSystem.Checked := ftSystem in FileTypes;
cbArchive.Checked := ftArchive in FileTypes;

end;
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
FileSys.Free;

end;
function TForm1.FormatBigBytes (const Msg: String; Value:
TLargeInteger): String;

var
Dbl: Double;

begin
Dbl := Value;
Result := Format (Msg + ' %n', [Dbl]);
Result := Copy(Result, 1, Length(Result)-3)+' bytes';

end;
procedure TForm1.DriveListChange(Sender: TObject);
var S: String;
function StrDriveType (Typ: TDriveType): String;
begin
case Typ of
fsRemovable: Result := 'Removable';
fsFixed: Result := 'Fixed ';
fsRemote: Result := 'Remote ';
fsCDROM: Result := 'CD-ROM ';
fsRAMDisk: Result := 'RAM-Disk ';
else Result := '-unknown-';

end;
end;

begin
with FileSys do begin
// First, point TFileSystem object at the new drive
DriveLetter := DriveList.Text [1];
// Now display the various drive properties
VolSize.Caption := FormatBigBytes(
'Total size of this drive is:', TotalSize);

S := VolumeName;
if S = '' then
S := '[None]';

VolName.Caption := Format(
'Volume label of this drive is: %s', [S]);

FSystem.Caption := Format(
'File system of this drive is: %s', [FileSystem]);

SerNum.Caption := Format(
'Serial number of this drive is: %s', [SerialNumber]);

DrvType.Caption := Format(
'Type of this drive is: %s',
[StrDriveType(DriveType)]);

FreeSp.Caption := FormatBigBytes(
'Free space on this drive is:', FreeSpace);

UpdateFolderList('');
end;

end;
procedure TForm1.UpdateFolderList(const FolderName: String);
begin
if FolderName <> '' then
FileSys.FolderName := FolderName;

CurFolder.Text := FileSys.FolderName;
FolderList.Items.Assign(FileSys.Folders);
FolderList.ItemIndex := 0;
FileList.Items.Assign(FileSys.Files);
FileList.ItemIndex := 0;
FileCount.Caption := Format(
'File count = %d', [FileList.Items.Count]);

TotFileSize.Caption := FormatBigBytes(
'Total size of files is:', FileSys.TotalFileSize);

end;
procedure TForm1.FolderListChange(Sender: TObject);
begin
UpdateFolderList (FolderList.Text);

end;
procedure TForm1.CurFolderKeyPress(
Sender: TObject; var Key: Char);

begin
if Key = #13 then UpdateFolderList (CurFolder.Text);

end;
procedure TForm1.cbReadOnlyClick(Sender: TObject);
var ft: TFileType;
begin
with Sender as TCheckBox do begin
ft := TFileType (Tag);
if Checked then
FileSys.FileTypes := FileSys.FileTypes + [ft]

else
FileSys.FileTypes := FileSys.FileTypes - [ft];

FileList.Items.Assign (FileSys.Files);
FileList.ItemIndex := 0;
FileCount.Caption := Format(
'File count = %d',[FileList.Items.Count]);

TotFileSize.Caption := FormatBigBytes(
'Total size of files is:', FileSys.TotalFileSize);

end;
end;
procedure TForm1.SumProc (const Name: String; const Info:
TSearchRec; var Continue: Boolean);

begin
DirSize := DirSize + Info.Size;

end;
procedure TForm1.Button1Click(Sender: TObject);
begin
DirSize := 0;
FileSys.TreeWalkFiles (SumProc);
ShowMessage(FormatBigBytes(
'Total size of this directory is:', DirSize));

end;
end.

➤ Listing 5

December 1999 The Delphi Magazine 35

includes a private TLargeInteger
called DirSize which is used to
accumulate the total size of all the
encountered files. It gets initialised
to zero within the Button1Click
routine and a call is then made to
TreeWalkFiles, passing it the
address of the SumProc callback
routine. The only job of this
routine is to add the size of each
file to DirSize and Button1Click
then displays the total number of
bytes using the very handy-dandy

little FormatBigBytes routine that I
use elsewhere in the test bed code.

Reassuringly, the test bed code
returns exactly the same total byte
size for a folder as is reported by
Windows Explorer, assuming that
you take care to check all the
file attribute flags as I’ve already
discussed.

Next Month
As with last month’s code,
the TFileSystem object is still

contained within the same source
file as the test bed code because
it’s often easier to develop a com-
ponent that way. Complete project
files (for Delphi 4) are included on
this month’s companion disk
along with a read-to-run (pack-
aged) EXE file (which needs the
Delphi 4 runtime package).

Oh yes, I lied. Last time round I
promised that we’d take a look at
file notifications, in other words
getting automatically notified by
Windows that some file or direc-
tory has changed. In fact, I’ve
decided to defer that discussion
until part 3 of this mini-series on
encapsulating the Windows file
system. Part 3 will be appearing in
Issue 54 of The Delphi Magazine
along with some other TFileSystem
goodies.

Next month, however, we’ll be
taking a break from the
TFileSystem component. Instead,
I’ll be taking a look at some of the
issues that software developers
will come up against in making the
transition to Windows 2000. See
you then!

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com

The Faux Pas Survival Guide
This is the title of a book which bears the subtitle The Fine Art of
Removing Your Foot from Your Mouth. I suddenly realised that I had
a pressing need for this publication when I received a deluge of email
messages drawing my attention to an embarrassing typo in my article
on code generation and optimisation hints and tips (Issue 50).
Happily, so many readers mentioned this to me that my embarrass-
ment was more than compensated for by a certain smug gratification
at the number of folks who read this column!

For the sake of the lone reader who wasn’t quite as eagle-eyed as
the rest (you know who you are...), here’s the problem: I gave a code
snippet which illustrated how to pre-initialise a number of object
instances to Nil, and I then demonstrated how to use this technique to
simplify what would have otherwise been a complicated arrange-
ment of nested try...finally blocks. This technique relies upon the
fact that calling Free on a Nil object instance has no effect. The code
that I presented was intended to place the actual constructor calls
inside a try...finally block, but they were inadvertently placed
above the block. The corrected code fragment should look like this:

Bitmap1 := Nil; Bitmap2 := Nil; MemStream := Nil;
try
Bitmap1 := TBitmap.Create;
Bitmap2 := TBitmap.Create;
FileStream := TFileStream.Create (SomeFile, SomeMode);
>>—— more code goes here ——<<

finally
Bitmap1.Free;
Bitmap2.Free;
FileStream.Free;

end;

As I mentioned back then, the idea is that if any constructor should
fail and raise an exception, control will be passed to the finally
clause, automatically freeing up any objects that were successfully
created. This technique can greatly simplify otherwise complex code
and it really does work (when it’s been typed in correctlyJ). First prize
in this month’s Spot the Gaff competition goes to Calum Anderstrem
who was well ahead of the rest of the field!

Incidentally, if the title of the above book is of any interest to you,
you can find more details on the internet at www.aeu-inc.com
/cgi-local/shop.pl/page=faux_pas_survival_guide.htm /SID=2976086

I’ve no idea whether or not it’s available in the UK, but the author
definitely isn’t Dennis Norden!

	Folder Navigation Features
	To FileClose Or Not to FileClose, That Is The Question
	Files Versus Folders
	First Steps In Tree-Walking
	The Test Bed Program
	Next Month
	The Faux Pas Survival Guide

